Researchers at the Joint European Torus at the UKAEA Culham Science Centre in Science Vale UK have doubled previous records of sustained fusion energy by producing a total of 59 megajoules of heat energy from fusion over a five second period.
Researchers from the EUROfusion consortium – 4,800 experts, students and staff from across Europe, co-funded by the European Commission – working on the Joint European Torus (JET), the largest and most powerful operational tokamak machine in the world, achieved the record using the same fuel mixture to be used by commercial fusion energy powerplants.
The record and scientific data from the crucial JET experiments are a major boost for ITER, the larger and more advanced version of JET. ITER is a fusion research mega-project supported by seven members – China, the European Union, India, Japan, South Korea, Russia and the USA – based in the south of France, to further demonstrate the scientific and technological feasibility of fusion energy.
As pressures mount to address the effects of climate change through decarbonising energy production, this success is a major step forward on fusion’s roadmap as a safe, efficient, low carbon means of tackling the global energy crisis.
George Freeman MP, Minister for Science, Research and Innovation, said:
“These milestone results are testament to the UK’s role as a global leader in fusion energy research. They are evidence that the ground-breaking research and innovation being done here in the UK, and via collaboration with our partners across Europe, is making fusion power a reality.
“Our Industrial Strategy for Fusion is intended to ensure the UK continues to lead the world on the commercial roll-out of this transformational technology, with the potential to deliver clean energy for generations to come.”
Ian Chapman, UKAEA’s CEO, said:
“These landmark results have taken us a huge step closer to conquering one of the biggest scientific and engineering challenges of them all. It is reward for over 20 years of research and experiments with our partners from across Europe.
“It’s clear we must make significant changes to address the effects of climate change, and fusion offers so much potential. We’re building the knowledge and developing the new technology required to deliver a low carbon, sustainable source of baseload energy that helps protect the planet for future generations. Our world needs fusion energy.”
Tony Donné, EUROfusion Programme Manager, said:
“This achievement is the result of years-long preparation by the EUROfusion team of researchers across Europe. The record, and more importantly the things we’ve learned about fusion under these conditions and how it fully confirms our predictions, show that we are on the right path to a future world of fusion energy. If we can maintain fusion for five seconds, we can do it for five minutes and then five hours as we scale up our operations in future machines.”